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Abstract

Alzheimer’s disease (AD) is the most common type of dementia that usually at-
tacks the elderly population. Great heterogeneity has been noticed within AD,
suggesting the possible existence of different subtypes. As such, researchers are
actively exploring AD subtypes to enable the disease treatment.

Two atypical variants have been manually defined by pathological autopsy,
but this post-mortem classification may not be as helpful in treatment and suffer
from human bias. On the other hand, neuroimaging-based classification, despite
its advantage of being in-vivo, is difficult due to the overwhelming amount of
high-dimensional data.

In this thesis, we address this challenge by machine learning of the neuroimag-
ing data. Specifically, we first quantify brain atrophy with voxel-based morphom-
etry and then model each AD patient as a mixture of AD subtypes and each
subtype as a mixture of atrophied voxels under the framework of topic modeling.

By doing so, we are able to learn, in an unsupervised manner, three subtypes—
hippocampal, cerebellum, and cortical—that show great disparity in memory and
executive function both at the baseline and during the disease progression. Fur-
thermore, our model, when applied to mild cognitive impairment (MCI) subjects,
provides predictive information about possible future conversion into AD.

Hopefully, our neuroimaging-based classification could facilitate AD under-
standings as well as the development of subtype-specific treatments.

Thesis Supervisor: B. T. Thomas Yeo
Title: Assistant Professor of Electrical & Computer Engineering
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Chapter 1

Introduction

Alzheimer’s disease (AD) is the most common type of dementia that usually at-

tacks the elderly population. Its symptoms include short-term memory loss in

the early stage, confusion, irritability, aggression, and long-term memory loss in

the later stage [1]. Eventually, the patients would have to completely rely on care

givers in daily activities, which places huge pressure on both their families and

the governments.

So far, none of the treatments for AD has been proven effective. Yet, scientists

have noticed and verified the great heterogeneity within AD in clinical, imaging,

and pathological aspects. In the hope that understanding the AD subtypes might

shed light on personalized treatments, researchers are seeking to discover the atyp-

ical AD variants.

[2] is one such endeavor where Murray et al. pathologically define two AD

subtypes—hippocampal-sparing (HpSp) and limbic-predominant (Lp)—besides

the typical AD. Yet, the classification is post-mortem and highly supervised. Noh

and colleagues hierachical-cluster AD into three subtypes based on cortical thick-

ness [3], but it only utilizes the cortical thickness information and fails to account
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for a possible mixture of subtypes. Hence, it still remains as an open issue how

to properly model AD subtypes and thereby discover them.

In this thesis, we model AD subtypes with latent Dirichlet allocation (LDA) [4],

a popular topic model originally proposed to discover latent topics underlying a

corpus. Specifically, we quantify brain atrophy in structural magnetic resonance

(MR) images with voxel-based morphometry (VBM) [5] and then process them

to resemble text documents for LDA. The discovered subtypes are then examined

in both their baseline characteristics and longitudinal progressions.

Our three contributions can be summarized as follows.

∙ Complementing the traditional classification methods (such as [2]) that

largely rely on domain knowledge, our method is unsupervised and thus

could potentially provide a more holistic picture, which may eventually lead

to counterintuitive but interesting findings.

∙ Our method studies in-vivo MR images instead of performing post-mortem

autopsy, therefore enabling early classification, which is a vital prerequisite

for patients to receive personalized treatments.

∙ Given the complexity of neurodegenerative diseases such as AD, it seems

impractical to classify a patient as one deterministic subtype. By consid-

ering each subject as a mixture of subtypes, we open up opportunities for

neuroscientists to explain some of the composite effects, which are otherwise

unaccountable.

Hopefully, this work could provide a new insight into AD subtype classification

and thus facilitate the development of mature early-stage subtype classification.

If AD subtype composition could be confirmed in an early stage, subtype-specific

treatments could then be developed to retard, stop, or even reverse the disease

14



progression.

The remainder of the thesis is organized as follows. Chapter 2 provides the

fundamentals needed to understand our methods. Chapter 3 summarizes the re-

lated work. Chapter 4 presents our model and methods. The discovered subtypes

are shown and validated in Chapter 5. Finally, Section 6 concludes the thesis and

points out future work.

15
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Chapter 2

Background

2.1 Alzheimer’s Disease

This section first illustrates the motivations of this project by providing an overview

of the disease. Next, the pathological aspect of the disease is briefly discussed.

Finally, we introduce several cognitive tests that we will utilize to analyze our

subtypes in Chapter 5.

2.1.1 Overview

Alzheimer’s disease (AD) is the most common type of dementia that usually

attacks the elderly population. Its symptoms include short-term memory loss in

the early stage, confusion, irritability, aggression, and long-term memory loss in

the later stage [1]. Mild cognitive impairment (MCI) is a prodromal stage of

AD. AD starts in the entorhina cortex, a region near the hippocampus [6]. Upon

onset, the neurons start becoming enervated and losing the communication abil-

ity. Soon, AD spreads to the hippocampus (the component in charge of learning

and converting short-term memories into long-term ones), causing new memory

difficult to form. As AD progresses, the patients’ language and problem solving

abilities deteriorate, and they start losing the ability to control their emotions and

17



make sense of things. In the late stage, the patients can no longer sustain their

old memories and have to completely depend on others for care [6].

The AD patients’ brains are abundant in two abnormal structures—amyloid

plaques and neurofibrillary tangles—that are made of misfolded proteins [2]. From

the neuroimaging perspective, AD causes the hippocampus, cerebral cortex to

shrink, and ventricles to expand, all of which are observable in the structural

magnetic resonance imaging (MRI) images [6]. See Figure 2-1.

(a) Normal brain [7]. (b) AD brain [8].

Figure 2-1: Comparison between a normal brain and an AD brain.

As of September 2014, there have been over 1400 clinical trials studying possi-

ble AD treatments [9], but none of them has been proven effective. As [10] surveys,

the heterogeneity of AD in clinical, imaging, and pathological aspects has been

noticed and verified by many researchers. With the hope that understanding

the AD subtypes might shed light on personalized treatments, researchers are

seeking to discover the atypical AD variants. One such endeavor is [2], where

Murray et al. suggest the existence of two AD subtypes besides the typical AD,

hippocampal-sparing (HpSp) and limbic-predominant (Lp).

18



2.1.2 Pathological Biomarkers

AD biomarkers are biochemical indicators used to predict, diagnose the disease,

and quantitatively measure its progression. Two widely accepted biomarkers for

AD are amyloid-β (Aβ) that forms plaques and tau protein that forms tangles,

both of which reside in the cerebrospinal fluid (CSF). More generally speaking,

AD biomarkers fall into two categories: one assessing Aβ deposition and the other

measuring neurodegeneration, defined as progressive loss of neurons and their

functions. For instance, CSF Aβ 1-42 belongs to the former category, whereas

CSF total tau (t-tau), phosphorylated tau (p-tau), and atrophy on MRI belong

to the latter [11]. Unlike CSF Aβ 1-42, whose level drops in AD due to the plaque

formation [12], CSF t-tau and p-tau increase in AD [13].

Besides CSF Aβ 1-42, t-tau, and p-tau, researchers also start studying the

role of other proteins, such as CSF clusterin, in the neurodenegeration process.

Morris et al. reveal a strong interaction between CSF Aβ 1-42 and clusterin on

the entorhinal cortex atrophy rate but not the hippocampal atrophy rate [14].

In addition, the interaction between CSF Aβ 1-42 and p-tau 181p is also found

significant [14]. As a genetic determinant of AD risk, apolipoprotein E’s (ApoE)

different alleles affect AD differently: individuals carrying ApoE ε4 are at an

increased risk of AD than those carrying ApoE ε3, whereas ApoE ε2 helps reduce

the risk [15].

2.1.3 Cognitive Tests

Yet, these biomarkers alone sometimes may not suffice to diagnose the disease or

fully describe its progression. Hence, cognitive tests, such as mini-mental state

exam (MMSE), are usually used as a supplement [16]. MMSE is a 30-point
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questionnaire1 that measures cognitive impairment by testing attention, calcu-

lation, recall, language, ability to follow simple commands, and orientation. In

MMSE, a higher score indicates better cognition, and the longitudinal scores re-

flect the trajectory of the cognitive change.

Besides MMSE, there are other standard tests such as Alzheimer’s disease as-

sessment scale-cognitive subscale (ADAS-Cog) and clinical dementia rating (CDR),

both of which assign a higher score to greater cognition dysfunction (opposite to

MMSE). To discern possible divergence in memory and executive function de-

clines, researchers have derived from the available neuropsychological battery two

separate composite scores, one for executive functioning (EF) [17] and the

other for memory (MEM) [18]. Same as MMSE, a higher value in both MEM

and EF stands for a healthier condition.

2.2 Neuroimaging

Neuroimaging refers to an array of imaging techniques that allow neurologists

to image the brain structures for analysis purpose in a non-invasive or low-

invasiveness way. Given that the advent of neuroimaging techniques enables

in-vivo brain examination, two Nobel prizes have been awarded to the neuroimag-

ing pioneers—one to Allan Cormack and Godfrey Hounsfield for the invention of

computerized axial tomography (CT) and the other to Peter Mansfield and Paul

Lauterbur for developing magnetic resonance imaging (MRI).

Equally important as the imaging technology is the subsequent image analysis.

Hence in this section, we first introduce very briefly the structural MR image—

our data format—and then explain the technique that we use to compute the

1A sample is available at http://www.health.gov.bc.ca/pharmacare/adti/clinician/
pdf/ADTI%20SMMSE-GDS%20Reference%20Card.pdf.

20

http://www.health.gov.bc.ca/pharmacare/adti/clinician/pdf/ADTI%20SMMSE-GDS%20Reference%20Card.pdf
http://www.health.gov.bc.ca/pharmacare/adti/clinician/pdf/ADTI%20SMMSE-GDS%20Reference%20Card.pdf


Figure 2-2: An unprocessed structural MR image viewed in FreeSurfer2.

voxel-wise atrophy.

2.2.1 Structural Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) produces high-quality three-dimensional (3D)

images of brain structures by magnetic field and radio wave. Two common types

are structural MRI for static examinations and functional MRI (fMRI) for tem-

poral brain activity recording. Unless otherwise specified, the subjects studied in

this thesis are all structural MR images.

Similar to pixels constituting 2D images, voxels compose 3D MR images. As

seen in Figure 2-2, besides gray matter (GM)—the matter of interest in this

study, there are also skulls, brain stems, cerebrospinal fluid, white matter, and

etc. present in an unprocessed MR image. Hence, one needs to perform neces-

sary preprocessing (to be discussed in 4.3), such as image segmentation, prior to

analyzing the GM.

2http://surfer.nmr.mgh.harvard.edu/
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2.2.2 Voxel-based Morphometry

Voxel-based morphometry (VBM) [5] is a statistical approach that allows one to

compare voxel-wise local GM concentrations between two subject groups. VBM

differs from some other global-shape techniques that VBM focuses on the local

differences with the macroscopic shape differences already discounted. Briefly

speaking, VBM discounts these global differences by spatially normalizing the im-

ages to a common brain template.

In this thesis, FSL-VBM pipeline3, as a part of FSL [19], is adopted, and its

steps can be summarized as follows.

1. Brain Extraction & GM Segmentation. First, non-brain structures,

such as skulls and eyes, are stripped by BET [20]. Then, all the brain-

extracted images are segmented into GM, white matter, and cerebrospinal

fluid by FAST4 [21].

2. Template Creation. This step constructs a study-specific GM template

from the subjects. First, GM images are affinely registered (using FLIRT

[22][23]) to the GM MNI152 template, then concatenated, and averaged.

The averaged image is then flipped about the 𝑦-aixs and re-averaged with

its unflipped copy, producing the first-pass affine template. The whole pro-

cess is then repeated, but this time using non-linear registration (using

FNIRT [24][25]) to the first-pass template (instead of the MNI152 template)

to obtain the final non-linear study-specific template.

3. Modulation & Smoothing. All the GM images can now be non-linearly

registered to the study-specific template, after which each voxel is modulated

by the Jacobian of the warp field so as to preserve the absolute amount rather

than relative concentration of the GM. The modulated GM images are then

3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fslvbm
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concatenated into a 4D image and smoothed by a range of Gaussian kernels

with full width at half maximum (FWHM) usually chosen around 10 mm

(8 mm in [26] and 10 mm in [27][28]). This makes each voxel the average

GM concentration from the voxels around, making the subsequent voxel-wise

analysis similar to a region of interest approach. In addition, smoothing also

renders, by the central limit theorem, the data more normally distributed,

improving the validity of the subsequent parametric statistical tests.

4. Statistical Analysis. Statistical analysis relies on the general linear model

(GLM, to be discussed in the next section) to identify the regions that are

significantly different in GM amount between groups [5]. For each voxel,

a GLM is fitted, which in turn provides us with the 𝑝-value against the

null hypothesis ℋ0: the two groups do not have statistically different GM

amounts for this particular voxel.

2.3 Machine Learning

This section first discusses general linear model (GLM) and its usefulness in testing

variable dependency, group comparison, and partialing out effects by nuisance

variables. Next, it introduces latent Dirichlet allocation (LDA) by explaining its

graphical model, generative process, and the variational expectation-maximization

(EM) algorithm for posterior inference and parameter estimation.

2.3.1 General Linear Model

In this subsection, scalars are expressed in the regular lowercase, such as 𝑦; col-

umn vectors are in the bold lowercase, e.g., x; matrices are written in the bold

uppercase, like X.
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General linear model (GLM4) predicts a response 𝑦 as a linear5 combination

of the explanatory variables (or conditions) x = (1, 𝑥1, 𝑥2, . . . , )
𝑇 with a residual

𝜖 ∼ 𝒩 (0, 𝜎2)

𝑦 = x𝑇𝛽 + 𝜖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + . . . + 𝜖,

where 𝛽 = (𝛽0, 𝛽1, 𝛽2, . . .)
𝑇 are the coefficients. More generally, when multiple sets

of responses and conditions are observed, the model becomes, in matrix form,⎛⎜⎜⎜⎝
𝑦1

𝑦2
...

⎞⎟⎟⎟⎠ = y = X𝛽 + 𝜖 =

⎛⎜⎜⎜⎝
x𝑇
1

x𝑇
2

...

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝛽0

𝛽1

...

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
𝜖1

𝜖2
...

⎞⎟⎟⎟⎠ ,

where y = (𝑦1, 𝑦2, . . .)
𝑇 is the column vector of observations, each row of the

design matrix X specifies a set of conditions x𝑇 , and 𝜖 is the column vector

of independent and identically distributed (i.i.d.) residuals. From a probabilistic

perspective, GLM becomes⎛⎜⎜⎜⎝
𝑦1

𝑦2
...

⎞⎟⎟⎟⎠ = y ∼ 𝒩
(︀
X𝛽, diag(𝜎2)

)︀
= 𝒩

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
x𝑇
1

x𝑇
2

...

⎞⎟⎟⎟⎠𝛽,

⎛⎜⎜⎜⎝
𝜎2 0 . . .

0 𝜎2 . . .
...

... . . .

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ,

and our goal is to find the “best” estimate of 𝛽 given y and X, for which we use

the maximum likelihood estimation (MLE) method

𝛽 = argmax
𝛽

log 𝑝
(︀
y | X𝛽, 𝜎2

)︀

4Some literature abbreviates generalized linear model also as GLM. Yet, they shall not be
confused. In fact, general linear model can be viewed as a special case of generalized linear
model with identity link and responses normally distributed. “Identity link” simply means that
the linear combination of the explanatory variables is already the response mean (i.e., without
any transformation).

5Note that the “linear” here refers to the linearity of the coefficients 𝛽. Hence, for example,
𝑦 = 𝛽0 + 𝛽1𝑥

2
1 + 𝛽2𝑥

4
2 + 𝜖 is also a GLM.
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= argmax
𝛽

𝑁∑︁
𝑛=1

log
1√

2𝜋𝜎2
exp

(︂
− 1

2𝜎2
(𝑦𝑛 − x𝑇

𝑛𝛽)2
)︂

= argmax
𝛽

−𝑁

2
log 2𝜋𝜎2 − 1

2𝜎2

𝑁∑︁
𝑛=1

(𝑦𝑛 − x𝑇
𝑛𝛽)2

= argmin
𝛽

𝑁

2
log 2𝜋𝜎2 +

1

2𝜎2

𝑁∑︁
𝑛=1

(𝑦𝑛 − x𝑇
𝑛𝛽)2,

which means that estimating 𝛽 by MLE is actually equivalent to by minimizing∑︀𝑁
𝑛=1(𝑦𝑛−x𝑇

𝑛𝛽)2, the sum of square errors. As a result, this method is also known

as least squares. Then, 𝛽 can be easily solved to be (X𝑇X)−1X𝑇y, provided

that the design matrix X is full-rank.

Testing Variable Dependency

GLM is a rather useful framework that, for example, allows us to test by how

much one variable is linearly dependent on the other. Suppose we want to test

whether the response 𝑦 is dependent on one explanatory variable 𝑥 given 200 (𝑥, 𝑦)

pairs. In this case, X is 200×2, and 𝛽 contains only a intercept 𝛽0 and a gradient

𝛽1. We further define a contrast c = (0, 1)𝑇 that allows us to only consider 𝛽1 if

we compute 𝛾 = c𝑇𝛽. Thus, our goal becomes to test how likely 𝛾 is 0 given the

observed data.

Given our model assumptions, 𝛾 actually follows a Student’s 𝑡-distribution

centered around zero under the null hypothesis ℋ0: 𝑦 is independent of 𝑥. Thus,

one can compute the probability of our 𝛾 estimate assuming it is drawn from that

𝑡-distribution due to ℋ0. This probability, often referred to as 𝑝-value, indicates

how confident we are in rejecting ℋ0 at some significance level (usually 1% or

5%). For instance, if 𝑝 < 0.01, we know there is only a < 1% chance for us to

draw such a 𝛾 assuming ℋ0 is true. Hence, we could reject ℋ0, concluding that 𝑦

is dependent on 𝑥.
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Comparing Two Groups Adjusted for Covariates

Recall that in the final step of VBM, we utilize GLM to compare two groups’ mean

values at a particular voxel. This is just one easy extension from the previous use.

Now that we have two groups, we need to split X’s all-one column into two binary

complementary ones so as to account for two different intercepts6. In our VBM

case, also present in X are three covariate columns for age, gender, and intracranial

volume (ICV). After fitting the GLM, we set our contrast c = (1,−1, 0, . . .)𝑇 or

c = (−1, 1, 0, . . .)𝑇 (assuming the first two are the two membership columns)

to determine whether the two groups’ averages are statistically different while

controlling for age, gender, and ICV.

Partialing Out Nuisance Variables

Besides controlling for the nuisance variables during group comparison, GLM is

also capable of doing so even when there is no comparison. This happens when

we wish to preprocess the raw data (e.g., hippocampus volume) so that they are

free of nuisance effects (such as those by age, gender, and ICV).

For this purpose, we first center the nuisance variables by demeaning each of

them and then construct the design matrix X. After fitting the model, we take the

sum of only the offset and residuals as the processed data. This is equivalent to not

centering the variables first and then using each variable’s mean value to predict

the response y. Intuitively, we are replacing the raw data with the data predicted

by a GLM that assumes the same age, gender, and ICV for everyone. By doing

so, the effects by the nuisance variables are removed (partialed out), whereas the

effects by the variable of interest, in this case the disease, are preserved.

6If the inference of interest is whether the gradients are different between the two groups,
then other covariate columns need also to be bisplit to account for different gradients.
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2.3.2 Latent Dirichlet Allocation

In this subsection, we introduce the overview and intuition of the latent Dirichlet

allocation (LDA) model, then formulate the model with its graphical model rep-

resentation and generative process, and finally outline the variational inference

for LDA.

Overview

Latent Dirichlet allocation (LDA) [4] is a Bayesian generative model originally pro-

posed to discover latent topics underlying a corpus. It considers a document as a

mixture of topics and a topic as a mixture of words (see Figure 2-3). Therefore, it

is hierarchical and mixed-membership. The learning of LDA is unsupervised ; dur-

ing learning, it encourages sparse word and topic distributions, which eventually

leads to co-occurring words getting clustered together.Generative model

gene     0.04

dna      0.02

genetic  0.01

.,,

life     0.02

evolve   0.01

organism 0.01

.,,

brain    0.04

neuron   0.02

nerve    0.01

...

data     0.02

number   0.02

computer 0.01

.,,

Topics Documents
Topic proportions and

assignments

• Each document is a random mixture of corpus-wide topics

• Each word is drawn from one of those topics

D. Blei Topic Models

Figure 2-3: A document is a mixture of topics, each of which is in turn a mixture
of words [29].
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𝑤𝑑,𝑛𝑧𝑑,𝑛𝜃𝑑𝛼 𝛽

𝑁𝑑

𝐷

Figure 2-4: LDA graphical model in the plate notation, where circles, shaded
circles, plates, and arrows stand for latent random variables or parameters, ob-
served random variables or parameters, replicates, and statistical dependencies,
respectively.

Graphical Model & Generative Process

Consider a 𝑉 -term dictionary and a 𝐾-topic corpus that contains 𝐷 documents,

each 𝑁𝑑 words long. The 𝑑th document’s 𝑛th word 𝑤𝑑,𝑛 (observable) is jointly

dependent on (1) a topic 𝑧𝑑,𝑛 drawn from a multinomial distribution 𝜃𝑑, which

itself is sampled once per document from 𝐷𝑖𝑟(𝛼), an exchangeable Dirichlet dis-

tribution with a scalar parameter 𝛼, and (2) a topic-vocabulary probability matrix

𝛽, whose element 𝛽𝑘,𝑣 is the probability of 𝑘th topic recruiting 𝑣th term in the

vocabulary dictionary7.

LDA’s generative process for an 𝑁 -word document is stated as follows.

1. Choose the topic mixture 𝜃 ∼ 𝐷𝑖𝑟(𝛼).

2. For each of the 𝑁 words, independently

(a) choose a topic 𝑧𝑛 ∼ 𝑀𝑢𝑙𝑡(𝜃);

(b) choose a word 𝑤𝑛 ∼ 𝑝 (𝑤𝑛 | 𝑧𝑛, 𝛽).

Posterior Inference & Parameter Estimation

See Appendix A for the full derivations of the variational inference and model

parameter estimation. Only the procedural outline is given in this section.

7Hence, every row of 𝛽 sums to 1.
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The inference task is, for each document, finding the posterior distribution

of the hidden variables (the topic mixture 𝜃 and word-level topics z) given the

document (observed words w), i.e.,

𝑝 (𝜃, z | w, 𝛼, 𝛽) =
𝑝 (𝜃, z,w | 𝛼, 𝛽)

𝑝 (w | 𝛼, 𝛽)
.

Note that the document subscript is dropped for simplicity, since we are con-

sidering only one document. Parametrized by 𝛼 and 𝛽, the numerator is given

by

𝑝 (𝜃, z,w | 𝛼, 𝛽) = 𝑝 (𝜃 | 𝛼) 𝑝 (z,w | 𝜃, 𝛽) = 𝑝 (𝜃 | 𝛼)
𝑁∏︁

𝑛=1

𝑝 (𝑧𝑛, 𝑤𝑛 | 𝜃, 𝛽)

= 𝑝 (𝜃 | 𝛼)
𝑁∏︁

𝑛=1

𝑝 (𝑧𝑛 | 𝜃) 𝑝 (𝑤𝑛 | 𝑧𝑛, 𝛽) = 𝑝 (𝜃 | 𝛼)
𝑁∏︁

𝑛=1

𝜃𝑧𝑛𝛽𝑧𝑛,𝑤𝑛

= 𝑝 (𝜃 | 𝛼)
𝑁∏︁

𝑛=1

(︃
𝐾∏︁
𝑘=1

𝑉∏︁
𝑣=1

(𝜃𝑘𝛽𝑘,𝑣)
1𝑤(𝑛,𝑣)1𝑧(𝑛,𝑘)

)︃

=

(︃
Γ (𝐾𝛼)

Γ𝐾 (𝛼)

𝐾∏︁
𝑘=1

𝜃𝛼−1
𝑘

)︃
𝑁∏︁

𝑛=1

(︃
𝐾∏︁
𝑘=1

𝑉∏︁
𝑣=1

(𝜃𝑘𝛽𝑘,𝑣)
1𝑤(𝑛,𝑣)1𝑧(𝑛,𝑘)

)︃
,

where 1𝑤(𝑛, 𝑣) and 1𝑧(𝑛, 𝑘) are indicator functions such that

1𝑤(𝑛, 𝑣) =

⎧⎨⎩ 1, 𝑤𝑛 is the 𝑣th dictionary term;

0, otherwise.
1𝑧(𝑛, 𝑘) =

⎧⎨⎩ 1, 𝑧𝑛 is the 𝑘th topic;

0, otherwise.

The denominator, also referred to as evidence, is obtained by marginalizing out 𝜃

and z in 𝑝 (𝜃, z,w | 𝛼, 𝛽).

𝑝 (w | 𝛼, 𝛽) =

∫︁ ∑︁
z

𝑝 (𝜃, z,w | 𝛼, 𝛽) d𝜃

=

∫︁ ∑︁
z

(︃
Γ (𝐾𝛼)

Γ𝐾 (𝛼)

𝐾∏︁
𝑘=1

𝜃𝛼−1
𝑘

)︃
𝑁∏︁

𝑛=1

(︃
𝐾∏︁
𝑘=1

𝑉∏︁
𝑣=1

(𝜃𝑘𝛽𝑘,𝑣)
1𝑤(𝑛,𝑣)1𝑧(𝑛,𝑘)

)︃
d𝜃
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=
Γ (𝐾𝛼)

Γ𝐾 (𝛼)

∫︁ (︃ 𝐾∏︁
𝑘=1

𝜃𝛼−1
𝑘

)︃
𝑁∏︁

𝑛=1

(︃
𝐾∑︁
𝑘=1

𝑉∏︁
𝑣=1

(𝜃𝑘𝛽𝑘,𝑣)
1𝑤(𝑛,𝑣)

)︃
d𝜃,

a function that is intractable because of the coupling between 𝜃 and 𝛽. As a

result, we resort to variational (instead of exact) inference techniques, specifically

the variational expectation-maximization (EM) algorithm, to approximate

the true posterior distribution 𝑝 (𝜃, z | w, 𝛼, 𝛽).

𝛾𝑑 𝜃𝑑 𝜑𝑑,𝑛 𝑧𝑑,𝑛

𝑁𝑑

𝐷

Figure 2-5: Variational distribution used to approximate the actual LDA poste-
rior.

By removing the problematic edges in the original graphical model, we con-

struct a simpler variational distribution 𝑞(𝜃, z | 𝛾, 𝜑) = 𝑞(𝜃 | 𝛾)
∏︀𝑁

𝑛=1 𝑞(𝑧𝑛 | 𝜑𝑛),

where the Dirichlet parameter 𝛾 and the multinomial parameter 𝜑 are the free

variational parameters (see Figure 2-5). We then optimize 𝛾 and 𝜑 such that the

constructed distribution is close in Kullback-Leibler (KL) divergence to the true

posterior. That is,

(𝛾*, 𝜑*) = argmin
(𝛾,𝜑)

𝐷𝐾𝐿(𝑞 (𝜃, z | 𝛾, 𝜑) ‖ 𝑝 (𝜃, z | w, 𝛼, 𝛽)).

This optimization problem can be proven equivalent to maximizing the log likeli-

hood’s lower bound ℒ (𝛾, 𝜑 | 𝛼, 𝛽) w.r.t. 𝛾 and 𝜑. That is,

(𝛾*, 𝜑*) = argmin
(𝛾,𝜑)

𝐷𝐾𝐿(𝑞 (𝜃, z | 𝛾, 𝜑) ‖ 𝑝 (𝜃, z | w, 𝛼, 𝛽)) = argmax
(𝛾,𝜑)

ℒ (𝛾, 𝜑 | 𝛼, 𝛽)

= argmax
(𝛾,𝜑)

𝐸𝑞 {log 𝑝 (𝜃, z,w | 𝛼, 𝛽)} − 𝐸𝑞 {log 𝑞 (𝜃, z | 𝛾, 𝜑)} .

Solving the optimization problem yields the following update equations for the
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variational parameters 𝛾 and 𝜑⎧⎪⎨⎪⎩
𝜑𝑛,𝑘 ∝ 𝛽𝑘,𝑣 exp (𝐸𝑞 {log (𝜃𝑘) | 𝛾})

𝛾𝑘 = 𝛼𝑘 +
𝑁∑︀

𝑛=1

𝜑𝑛,𝑘.

Interestingly, the two update equations have intuitive interpretations: the Dirich-

let parameter 𝛾𝑘 is updated by adding the expected occurrences of the 𝑘th topic

among the observed 𝑁 words; the update of the multinomial parameter 𝜑𝑛,𝑘 re-

sembles 𝑝(𝑧𝑛 | 𝑤𝑛) ∝ 𝑝(𝑤𝑛 | 𝑧𝑛)𝑝(𝑧𝑛).

After tightening the lower bound by adjusting 𝛾 and 𝜑 (E-step of the varia-

tional EM algorithm), we now fix 𝛾 and 𝜑 (i.e., the variational distributions) and

maximize the lower bound w.r.t. the model parameters 𝛼 and 𝛽 (M-step of the

variational EM algorithm).

For more details on inference and estimation, see Appendix A. The variational

EM algorithm for LDA is summarized in pseudocode as follows.
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Algorithm 1 Variational EM Algorithm for LDA
Input: Topic number 𝐾; 𝐷 documents
Output: Approximated posterior 𝑝 (𝜃, z | w, 𝛼, 𝛽); model parameters 𝛼 and 𝛽

Algorithm:

◁ Initializing model parameters
𝛼 := 50/𝐾

𝛽𝑘,𝑣 := 1,∀𝑘 ≤ 𝐾, ∀𝑣 ≤ 𝑉

repeat

◁ E-step: tightening the lower bound of the log likelihood
for each document 𝑑 do

◁ Initializing variational parameters
𝜑0
𝑑,𝑛,𝑘 := 1/𝐾, ∀𝑛 ≤ 𝑁𝑑, ∀𝑘 ≤ 𝐾

𝛾0
𝑑,𝑘 := 𝛼 + 𝑁𝑑/𝐾, ∀𝑘 ≤ 𝐾

repeat
for each word 𝑛 do

for each topic 𝑘 do
𝜑𝑡+1
𝑑,𝑛,𝑘 := 𝛽𝑘,𝑤𝑛 exp

(︀
Ψ(𝛾𝑡

𝑑,𝑘)
)︀

normalize
∑︀𝐾

𝑘=1 𝜑
𝑡+1
𝑑,𝑛,𝑘 = 1

for each topic 𝑘 do
𝛾𝑡+1
𝑑,𝑘 := 𝛼 +

∑︀𝑁𝑑

𝑛=1 𝜑
𝑡+1
𝑑,𝑛,𝑘

until convergence

◁ M-step: maximizing the constructed lower bound
for each topic 𝑘 do

for each dictionary term 𝑣 do
for each document 𝑑 do

for each word 𝑛 do
𝛽𝑘,𝑣 := 𝛽𝑘,𝑣 + 𝜑𝑑,𝑛,𝑘1𝑤(𝑑, 𝑛, 𝑣)

normalize
∑︀𝑉

𝑣=1 𝛽𝑘,𝑣 = 1

update 𝛼 via the linear-time Newton-Raphson algorithm

until lower bound converged
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Chapter 3

Related Work

3.1 Alzheimer’s Disease Subtypes

Survey paper [10] reviews the long-standing theory of Alzheimer’s disease (AD)

heterogeneity and summarizes six potential AD subtypes from various literature.

As the prototype, typical AD is late-onset with amnestic impairment in asso-

ciation with hippocampal and temporal-parietal atrophy. Also late-onset is the

temporal (pure amnestic) variant that shows a slower rate of cognitive decline

clinically and, pathologically, has the plaques and neurofibrillary tangles limited

to the limbic regions with little or no spread to the neocortical areas. Left (lan-

guage) variant is an early-onset AD variant typified by non-fluent speech with

agrammatism and phonemic paraphasia. It differs from the language symptom

of the late-stage typical AD, which is generally fluent in nature. Another similar

language-related variant is logopenic progressive aphasia whose speech has the

grammar and articulation preserved but suffers from impaired repetition. Frontal

(executive) variant is a rare early-onset variant with prominent apathy, loss of

empathy, and socially inappropriate behaviors. Finally, the right (visuopercep-

tive) variant patients experience difficulty with visually guided tasks and possess

subtle greater-than-left right temporal and parietal atrophy.
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In post-mortem study [2], Murray et al. categorize AD into three pathological

subtypes—hippocampal-sparing (HpSp), limbic-predominant (LP), and typical

AD. Compared with typical AD, HpSp has more neurofibrillary tangles in the

cortex and fewer in the hippocampus, whereas the opposite pattern is observed

in LP. The categorization is done by a quartile classification of the ratio between

average hippocampal to cortical neurofibrillary tangle count (by domain knowl-

edge, hence supervised). The median counts of neurofibrillary tangles are then

used to further offset any over- or underestimation.

Continuing from [2], Whitwell and colleagues confirm in [30] that MRI atro-

phy patterns indeed differ across these pathologically defined AD subtypes. More

specifically, they compute by VBM the head size-corrected gray matter (GM) vol-

umes for hippocampus and three association cortices (lateral frontal, temporal,

and parietal). It is found that the ratio of hippocampal to cortical volumes pro-

duces the most significant differences and hence the best discrimination between

groups. This study thus proves the correlation between neurofibrillary tangles (in

pathology) and volume loss (in neuroimaging). Note, however, [30] does not de-

fine the subtypes with MRI, but rather presents the neuroimaging manifestation

of the pathological subtypes in [2].

Noh et al. make the classification unsupervised by performing Ward’s hierar-

chical clustering on the cortical thickness data [3] and discover three subtypes—

medial temporal, parietal dominant, and diffuse atrophy. Although the classi-

fication is unsupervised, it does not account for mixed membership—a subject

may be a mixture of several subtypes. Furthermore, it considers only the cortical

region, but atrophy in the subcortical region, such as cerebellum, does provide

some subtype discrimination as shown in Chapter 5.
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3.2 Topic Modeling in Neuroscience

So far, there are very few works that tackle neuroscience problems by topic mod-

eling, and they are all very recent (in late 2014). One such study is [31], where

Koch et al. discover six latent sleep states by LDA.

As an extension of LDA, the author-topic model [32] is proposed to include

author information as an additional layer on top of the original model. Utilizing

this author-topic model, Yeo et al. explore the flexibility and specialization of

the human association cortex by viewing experiments as documents, tasks as

authors, cognitive components as topics, voxels as vocabulary, and activation foci

as words [33].

35



36



Chapter 4

Methods

4.1 Our Model

Subjects Subject 1 Subject 2 . . . Subject 𝑁

𝑝 (subtype | subject)

Subtypes Subtype 1 Subtype 2 . . . Subtype 𝐾

0.8 0.1 . . . 0.02

𝑝 (voxel | subtype)

Voxels Voxel 1 Voxel 2 . . . Voxel 𝑉

60𝑝0 𝑝0 . . . 0.1𝑝0

Figure 4-1: The relationships among subjects, AD subtypes, and implicated vox-
els. Since it is the relative value that matters in 𝑝 (voxel | subtype), 𝑝0 is adopted
as the “base probability” for clarity.

Similar to the latent Dirichlet allocation (LDA) model, our model is also struc-

tured in a hierarchical manner as in Figure 4-1. More specifically, instead of hard-

assigning a subject to one AD subtype, we consider each subject is a mixture of
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subtypes (i.e., mixed membership), each of which is in turn a mixture of atro-

phied voxels. For example in Figure 4-1, Subject 2’s top two prominent subtypes

are Subtypes 1 and 2; Subtype 2 most likely implicates Voxel 1. Hence, in our

problem, to be estimated are each subject’s subtype mixture 𝑝 (subtype | subject)

and each subtype’s atrophy pattern 𝑝 (voxel | subtype).

The reasonableness of our model is two-fold. First, the mixed membership

accounts for a subject possessing several subtypes simultaneously and therefore

allows us to consider mixed effects. Second, in our model, one subtype implicates

many voxels, and conversely, several subtypes may be responsible for a voxel’s

atrophy—this nicely captures the actual scenario in the disease.

4.2 Data Acquisition

Data used in this thesis were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI)1. The ADNI was launched in 2003 as a database

for researchers to study whether neuroimaging techniques, biomarkers, and neu-

ropsychological assessments can be fused to provide better AD understandings.

The subjects have been recruited from over 50 sites across the United States and

Canada. The initial goal of ADNI was to recruit 800 subjects, but ADNI has been

followed by ADNI-GO and ADNI-2. To date, these three protocols have recruited

over 1500 55 to 90-year-old participants consisting of cognitively normal (CN)

individuals, people with mild cognitive impairment (MCI), and AD subjects. The

follow-up examination dates of each subject are specified in the ADNI-1, ADNI-2,

and ADNI-GO protocols. Subjects originally recruited for ADNI-1 and ADNI-GO

had the option to be followed in ADNI-2.

The AD subtypes are learned from 188 AD subjects at their respective base-

1http://adni.loni.usc.edu
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lines in the ADNI-1 cohort. Their longitudinal follow-up data, whenever available,

are also analyzed for validation purpose as to be shown in Chapter 5. Note that

although only the 188 AD subjects are used for machine learning, yet the whole

cohort, additionally including 228 CN subjects and 394 MCI subjects, is used in

data preprocessing, such as VBM (to create our VBM template so as to avoid

template bias) and linear regression.

4.3 Data Preprocessing

We preprocess the raw MR images so that they resemble text documents, which

in turn serve as LDA’s input.

4.3.1 Voxel-based Morphometry

As outline in Section 2.2.2, the FSL-VBM pipeline2 is adopted. Hence, we first

reorder the voxels and adjust the header information so that the images conform

to FSL’s convention. After this, the MR images are ready for VBM.

In brief, the MR images are first brain-extracted [20] and gray matter (GM)-

segmented [21] before being affinely registered [22][23] to the MNI152 standard

space. The resulting images are averaged, flipped around the 𝑦-axis, and then

re-averaged to create a left-right symmetric, first-pass GM template. The same

procedure is then repeated but this time with non-linear registration [24][25],

producing the final customized GM template. Next, all native GM images are

non-linearly registered to this final template and modulated by the Jacobians of

the warp field to correct for local expansion (or contraction) due to the non-linear

component of the spatial transformation. Finally, the modulated GM images are

smoothed with an isotropic Gaussian kernel with its full width at half maximum

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fslvbm
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(FWHM) being 10 mm. Up to this point, the lower a voxel’s intensity is, the more

atrophied that voxel is.

In fact, the whole VBM procedure includes another final and probably the

most important step, voxel-wise statistical analysis, that displays which voxels

are significantly different across groups. This step is achieved by the second use

of GLM as illustrated in Section 2.3.1. Yet, this step is only used for VBM sanity

check in this project and thus not shown here.

4.3.2 Partialing Out the Effects by Nuisance Variables

Before the linear regression, we take log10(·) of the modulated GM density from

the previous step and obtain a stretched range, wherein a more negative value

means severer atrophy.

As detailed in Section 2.3.1, we can utilize a general linear model (GLM) to

partial out the effects by the nuisance variables. In this project, since we are only

concerned with the disease-related atrophy, age, gender, and intracranial volume

(ICV) are the nuisance variables. Intuitively, aging partially accounts for brain

atrophy; men tend to have larger brain volume than women, which may confuse

women’s brains as more atrophied when registered to the same template; the same

logic applies to ICV.

Implementation-wise, for our 810 subjects, we construct our GLM as⎛⎜⎜⎜⎜⎜⎜⎝
𝑦1

𝑦2
...

𝑦810

⎞⎟⎟⎟⎟⎟⎟⎠ = y = X𝛽 + 𝜖 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 𝑎1 𝑔1 𝑣1

1 𝑎2 𝑔2 𝑣2
...

...
...

...

1 𝑎810 𝑔810 𝑣810

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽0

𝛽1

𝛽2

𝛽3

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖1

𝜖2
...

𝜖810

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where 𝑦 is the logarithm of GM density, 𝑎 is the demeaned age, 𝑔 is the demeaned

gender, and 𝑣 is the demeaned ICV. We then find the least squares solution of 𝛽

(and the corresponding 𝜖), with which we partial out age, gender, and ICV

⎛⎜⎜⎜⎜⎜⎜⎝
𝑦′1

𝑦′2
...

𝑦′810

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

1 0 0 0
...

...
...

...

1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽0

𝛽1

𝛽2

𝛽3

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖1

𝜖2
...

𝜖810

⎞⎟⎟⎟⎟⎟⎟⎠ .

4.3.3 𝑧-normalization, Thresholding, & Quantization

For each voxel, we perform 𝑧-normalization across all the subjects (including CN

and MCI subjects) and threshold any value above zero as zero. By far, each voxel

either carries a zero value (considered as no atrophy) or a negative value. Then,

we multiply the values by −10 so that now a larger (positive) number presents

severer atrophy. Finally, we make them integer counts by taking the floor function.

Thus far, each subject’s every voxel carries a nonnegative integer, which we

name as “atrophy count”. For instance, a voxel’s atrophy count of 10 means that

that voxel is 1 standard deviation below (more atrophied than) that voxel’s cohort

mean (all in the log-space).

4.4 Learning the Subtypes

Now that each voxel has an atrophy count, we could translate LDA to our prob-

lem in the following fashion (also see Table 4.1). Consider a cohort of 𝐷 brains,

each of which is composed of 𝑁𝑑 atrophied voxels. In the cohort lies a total of

𝐾 hidden atrophy topics, each formed by possibly overlapping subsets of the 𝑉

MNI1523 voxels. Under this mapping, the number of times that a word appears

3MNI152 is a standard space defined by the Montreal Neurological Institute.

41



(i.e., word count) corresponds to the atrophy level of a voxel.

Table 4.1: Translating the original LDA model to our problem.

From corpus dictionary words topic document word count

To cohort MNI152 voxels subtype brain atrophy level

Now, the 𝑑th brain’s 𝑛th atrophied voxel 𝑤𝑑,𝑛 (observable) is jointly dependent

on (1) an atrophy topic 𝑧𝑑,𝑛 drawn from a multinomial distribution 𝜃𝑑, which it-

self is sampled once per brain from 𝐷𝑖𝑟(𝛼), an exchangeable Dirichlet distribution

with a scalar parameter 𝛼, and (2) a subtype-voxel probability matrix 𝛽, whose

element 𝛽𝑘,𝑣 is the probability of 𝑘th subtype implicating 𝑣th voxel of the MNI152

voxels4.

𝑤𝑑,𝑛𝑧𝑑,𝑛𝜃𝑑𝛼 𝛽

𝑁𝑑

𝐷

Figure 4-2: The LDA model revisited.

Similar to the original LDA model, the generative process producing 𝑁 atro-

phied voxels given 𝛼 and 𝛽 can be summarized as below.

1. Choose the atrophy topic mixture 𝜃 ∼ 𝐷𝑖𝑟(𝛼).

2. For each of the 𝑁 atrophied voxels, independently

(a) choose an atrophy topic 𝑧𝑛 ∼ 𝑀𝑢𝑙𝑡(𝜃);

(b) choose an atrophied voxel 𝑤𝑛 ∼ 𝑝 (𝑤𝑛 | 𝑧𝑛, 𝛽).

Using the variational expectation-maximization (EM) algorithm detailed in

Appendix A, we can infer the posteriors and estimate the model parameters from
4Hence, every row of 𝛽 sums to 1.
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the 188 AD subjects’ baseline VBM output. By iterating between the E-step and

M-step until convergence, we obtain the approximate posterior and the model

parameters. More specifically, we compute a subject’s 𝑖th subtype probability 𝑝𝑖

as

𝑝𝑖 =
𝛾𝑖∑︀𝐾
𝑘=1 𝛾𝑘

,

the 𝑖th element of the expectation of 𝐷𝑖𝑟(𝛾). To obtain the probabilities of this

subtype implicating different voxels, i.e., 𝑝(voxel | subtype), we simply take the

𝑖-th row of the estimated 𝛽 matrix.

Since EM algorithm is susceptible to local optima, we randomly initialize 20

runs, among which we choose the one with maximum likelihood as our final esti-

mation. Our inspection is that all the runs appear to be almost the same.

We pick the run with maximum likelihood as our final estimation among the

20 random initializations. As a result, we know the subtype composition for each

subject. Furthermore, given a subtype, we can statistically pinpoint which voxels

are likely to be implicated.
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Chapter 5

Results & Discussions

5.1 Two Subtypes: Subcortical & Cortical

Setting the desired number of subtypes 𝐾 = 2, we obtain two subtypes, which

we name as subcortical (S) and cortical (Co) subtypes. As shown in Figure 5-1,

S mainly implicates the subcortical structures, such as hippocampus and cerebel-

lum, whereas Co largely affects the cortical region.

5e-6 1e-5 

Figure 5-1: Atrophy patterns of the two subtypes discovered: subcortical (S, top)
and cortical (Co, bottom). Each 3D subtype volume is presented as three sagittal,
three coronal, and three axial slices (in order, from left to right), organized in one
row. Heat map indicates which voxels are more likely to be atrophied given a
certain subtype, i.e., 𝑝(voxel | subtype).
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5.1.1 Age at Baseline

It has been reported in [2] that the age at onset is different for different sub-

types: hippocampal-sparing (our Co) < typical < limbic-predominant (our S)

with 𝑝 < 0.001. We attempt to replicate the same trend with patients’ baseline

age. Although our baseline age is not exactly the age at onset, it still provides a

good approximation, especially given the great difficulty of measuring the exact

age at onset in practice. Since our model expresses subjects as subtype mixtures,

instead of categorizing them deterministically, we consider the correlation between

the baseline age and the probability of a subtype (say, Co), rather than manually

split the subjects into subtype groups for group comparison.
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Figure 5-2: Correlation between age and AD subtype. The red line is the re-
gression line by GLM; 𝑝 is for the null hypothesis ℋ0: subtype and age are un-
correlated, controlling for total atrophy; 𝑟 is the partial correlation coefficient
controlling for total atrophy.

Raw age and subtype probability are presented as blue datapoints in Figure 5-

2; the 𝑝-value and partial correlation coefficient 𝑟 are obtained while controlling

for total atrophy, which is represented by the total log GM amount. As the figure

indicates, the Co group is younger (𝑝 < 0.05) than the S group, consistent with [2].

46



5.1.2 Education

We also detect a difference in education between different subtypes. Using the

same analysis as above, we test against the null hypothesis that education is

the same between the two subtypes. As shown in Figure 5-3, we reject the null

hypothesis at 5% and conclude that the Co group has a higher education than the

S group. A possible explanation for the phenomenon is that the more education

a man receives, the more often he repeatedly trains his hippocampus, the part in

charge of converting short-term memories into long-term ones. As a result, his

hippocampus gets increasingly resilient to AD atrophy, causing him to develop

Co (instead of H) AD, if ever.
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Figure 5-3: Correlation between education and AD subtype. The red line is the
regression line by GLM; 𝑝 is for the null hypothesis ℋ0: subtype and education are
uncorrelated, controlling for total atrophy; 𝑟 is the partial correlation coefficient
controlling for total atrophy.

5.1.3 Mini-mental State Exam

We now validate the two subtypes by proving their great disparity in the disease

progression. Let us first describe the disease progression with mini-mental state
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exam (MMSE), a widely-used 30-point questionnaire that measures cognitive im-

pairment. We adopt the same analysis method as before. In Figure 5-4a and the

subsequent figures, the “annual change” is computed as the slope of the fitting line

for all (at least four) longitudinal datapoints.
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(a) Baseline MMSE
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(b) Longitudinal MMSE

Figure 5-4: Correlations between MMSE and AD subtype. The red line is the
regression line by GLM; 𝑝 is for the null hypothesis ℋ0: subtype and quantity of
interest are uncorrelated, controlling for total atrophy; 𝑟 is the partial correlation
coefficient controlling for total atrophy.

As Figure 5-4a shows, there is no difference (𝑝 = 0.36) between S and Co

groups in their baseline MMSE. However, in the longitudinal course, Co declines

faster (𝑝 < 0.001) than S, as Figure 5-4b demonstrates. This suggests that Co is

a more fast-deteriorating subtype than S.

5.1.4 Memory & Executive Function

MMSE can be inherently noisy and unstable, possibly leading to a rise even when

the subject remains at the same dementia level. Consequently, the computed

annual change, i.e., the slope, may not be very accurate. As such, researchers have

derived from MMSE and other tests a composite score for memory (MEM) [18]

that is perceived to be more sensitive. In addition, they devise another composite

score for executive functioning (EF) [17] to test particularly executive functioning.
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We now analyze the differences between the subtypes in these two composite

scores.
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(a) Baseline MEM
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(b) Longitudinal MEM
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(c) Baseline EF
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(d) Longitudinal EF

Figure 5-5: Correlations between memory, executive function scores and AD sub-
type. The red line is the regression line by GLM; 𝑝 is for the null hypothesis ℋ0:
subtype and quantity of interest are uncorrelated, controlling for total atrophy; 𝑟
is the partial correlation coefficient controlling for total atrophy.

We find that Co declines faster than S in both memory (𝑝 = 0.0001, Figure 5-

5b) and executive function (𝑝 = 0.0029, Figure 5-5d); Co is worse in executive

function at the start (𝑝 = 0.0018, Figure 5-5c). Yet, there is no significant differ-

ence in baseline memory between the two subtypes (𝑝 = 0.43, Figure 5-5a).

As Figure 5-5b shows, MEM indeed gives a stronger, presumably less noisy,
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trend (𝑟 = −0.35) than MMSE. The same trend in EF annual change confirms

that Co is a more fast-deteriorating subtype than S in both memory and executive

function.

5.2 Three Subtypes: Hippocampal, Cerebellum,

& Cortical

As we move from two subtypes to three subtypes, S further splits into two

subtypes—hippocampal (H) and cerebellum (Ce), whereas Co remains (Figure 5-

6). As their names suggest, H, Ce, and Co mostly implicates hippocampus, cere-

bellum, and cortical region, respectively.

0.75e-5 1.25e-5 

Figure 5-6: Atrophy patterns of the three subtypes discovered: hippocampal (H,
top), cerebellum (Ce, middle), and cortical (Co, bottom). Each 3D subtype vol-
ume is presented as three sagittal, three coronal, and three axial slices (in order,
from left to right), organized in one row. Heat map indicates which voxels are
more likely to be atrophied given a certain subtype, i.e., 𝑝(voxel | subtype).

Since one more subtype may provide us with higher resolution (hence, bet-

ter discrimination), we now re-examine age, education, MMSE, MEM, and EF.

However, in three subtypes, we can no longer express the subtype composition

with one axis as in two subtypes. Therefore, for each subtype, we create 1000

populations by bootstrapping our current 188 AD subjects and then, for each
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population, compute its subtype-weighted average as its bootstrap statistic. So

for each subtype, we have 1000 bootstrap statistics, which are the empirical “ex-

pected values of the quantity of interest” for this subtype. All of the bootstrap

statistics are presented by subtype in the subsequent standard box plots.

Because we can generate an arbitrarily large number of populations by boot-

strapping, it makes no sense to compute the 𝑝-value from these artificial popu-

lations, say, with analysis of variance (ANOVA). So all the 𝑝-values below are

computed from GLM, for ℋ0: 𝛽1 = 𝛽2 = 0 in 𝑦 = 𝛽0 + 𝛽1 · 𝑝 (H | subject) +

𝛽2 · 𝑝 (Ce | subject) + 𝜖. That is, we are testing whether the quantity of inter-

est is independent of all the subtypes. Note that because 𝑝 (subtype | subject) is

a probability distribution, any subtype probability is linearly dependent on the

other two, i.e., 𝑝 (H | subject) + 𝑝 (Ce | subject) + 𝑝 (Co | subject) = 1. Therefore,

no matter which two subtype probabilities we put as explanatory variables in our

GLM, the 𝑝-value will be the same.

5.2.1 Age at Baseline

In the case of age, having one more subtype does not seem to have provided

powerful discrimination (see Figure 5-7). Although S further splits into H and

Ce, H and Ce are statistically the same in age. Thus, our conclusion in age

remains the same: the onset of Co AD tends to be earlier than other subtypes.

5.2.2 Education

Similar to age, one more subtype does not further distinguish the S group, because

education is statistically the same between the H and Ce groups (see Figure 5-8).

Same as before, the Co group receives longer education.
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Figure 5-7: Expected age of each AD subtype shown in standard box plot, where
the first 𝑄1 quartile and third quartile 𝑄3, median, 1.5×(𝑄3−𝑄1), and outliers are
indicated respectively by the blue rectangular, red horizontal bar, black whiskers,
and red crosses.
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Figure 5-8: Expected education (years) of each AD subtype shown in standard
box plot, where the first 𝑄1 quartile and third quartile 𝑄3, median, 1.5×(𝑄3−𝑄1),
and outliers are indicated respectively by the blue rectangular, red horizontal bar,
black whiskers, and red crosses.
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5.2.3 Mini-mental State Exam

Moving from two subtypes to three provides great separability in MMSE within

the S group. When we only have two subtypes, we fail to detect any difference in

baseline MMSE, despite that H and Ce in fact have significantly different baseline

MMSE as shown in Figure 5-9a. When combined as S in the case of two subtypes,

H and Ce simply balance each other out, which does not happen any more when

we allow for three subtypes.
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(a) Baseline MMSE
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Figure 5-9: Expected baseline MMSE and annual decline of each AD subtype
shown in standard box plot, where the first 𝑄1 quartile and third quartile 𝑄3,
median, 1.5 × (𝑄3 −𝑄1), and outliers are indicated respectively by the blue rect-
angular, red horizontal bar, black whiskers, and red crosses.

Figure 5-9a conveys that at baseline, the H group has an expected MMSE as

low as 23.1, whereas the Ce group has a higher MMSE, around 23.6. In terms of

MMSE decline rate, Co remains to be the fastest at around −2.5 points per year.

Ce seems to be the mildest subtype that starts off better and declines slowly.

5.2.4 Memory & Executive Function

Similar separation is also observed in baseline MEM (Figure 5-10a), which again

demonstrates the increased resolution by having one more subtype. Just as in

two subtypes, MEM shares the same trend with MMSE, but provides stronger
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(c) Baseline EF
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Figure 5-10: Expected baseline memory, executive function and their annual
changes of each AD subtype shown in standard box plot, where the first 𝑄1

quartile and third quartile 𝑄3, median, 1.5× (𝑄3−𝑄1), and outliers are indicated
respectively by the blue rectangular, red horizontal bar, black whiskers, and red
crosses.

separation. In both MMSE and MEM, H starts off the worst among the three

subtypes, but Co declines faster in progression (Figure 5-10b). Co also declines

fastest in executive function (Figure 5-10d). Furthermore, Co is already worse

than Ce and H in executive function at the baseline (Figure 5-10c).

The decoupling between memory and executive function at the baseline is also

interesting (Figure 5-10a, 5-10c): although H is worst in memory, yet it is better in

executive function. This proves that our model is not merely splitting up groups
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by disease severity, which, if true, will manifest itself with a subtype that is worst

in both memory and executive function. Hence, these are real subtypes that may

fall into different disease stages.

5.3 Predicting Conversion to Alzheimer’s Disease

Because we include CN and MCI subjects in preprocessing, they also have at-

rophy counts just as the AD subjects do. We therefore can apply our learned

model to infer the baseline-MCI subjects’ posterior distributions. This amounts

to examining whether their pre-AD subtype compositions can foretell anything.

Since MCI is the prodromal stage of AD, a natural idea is to see if we can utilize

MCI subjects’ pre-AD subtype compositions inferred by our model to predict the

possible future conversion into AD.

The tricky part is, however, that ascertaining whether an MCI subject converts

or not is sometimes impossible given the data available. For instance, a subject

may have already converted into AD, but has dropped out of the study, mak-

ing his conversion record missing. Because of this limitedness, we need to define

“convert” or “nonconvert” within a certain time window. In this thesis, we define

a convert as a subject whose conversion (assigned to value 1) is seen within all

the available data and a nonconvert (assigned to value 0) as a subject whose con-

version is never seen within all the data, which itself has to span at least two years.

After inferring the 394 MCI subjects with our model, we compute each sub-

type’s “expected conversion” by exactly the same bootstrap technique as in previ-

ous section. The results are shown in Figure 5-11. Note that because we have 198

converts and 131 nonconverts, the expected conversion values of all the subtypes

will be skewed away from 0 towards 1. Therefore, it is their relative positions

that carry useful information. As shown, MCI subjects with more H component
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is more likely to convert into AD (𝑝 = 0.0041).
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Figure 5-11: Expected conversion of each pre-AD subtype shown in standard box
plot, where the first 𝑄1 quartile and third quartile 𝑄3, median, 1.5 × (𝑄3 −𝑄1),
and outliers are indicated respectively by the blue rectangular, red horizontal bar,
black whiskers, and red crosses.

To conclude, among the three subtypes that we discover, Cortical Subtype

(Co) receives the longest education and has the earliest age at onset. In terms of

memory, Hippocampal Subtype (H) is the worst at baseline, but Cortical Subtype

(Co) declines fastest during the disease progression. As for executive function,

Cortical Subtype (Co) not only starts off worst, but also declines faster than

Hippocampal Subtype (H) and Cerebellum Subtype (Ce). Overall, Cerebellum

Subtype (Ce) seems to be a mild subtype that deteriorates slowly. Moreover, MCI

of Hippocampal Subtype (H) is more likely to convert to AD than those with the

other two subtypes.
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Chapter 6

Conclusion & Future Work

In this thesis, we address the problem of unsupervisedly discovering Alzheimer’s

disease (AD) subtypes from a huge amount of high-dimensional magnetic reso-

nance (MR) images. Specifically, we model each AD patient as mixture of AD

subtypes, each of which is in turn a mixture of atrophied voxels. We first quan-

tify voxel-wise atrophy with voxel-based morphometry (VBM) and then learn the

hidden subtypes as well as subtype-voxel distributions by topic modeling. As a re-

sult, we discover three subtypes—hippocampal (H), cerebellum (Ce), and cortical

(Co)—that, as their names suggest, largely implicate the hippocampus, cerebel-

lum, and cortical region, respectively.

We then validate these subtypes by showing their great disparity in different

aspects both at the baseline and during the disease progression. Specifically, Co

receives the longest education and has the earliest age at onset. In the memory

aspect, H starts off worst, but Co deteriorates fastest during the disease develop-

ment. Co also declines fastest in executive function. Therefore, Co is a relatively

acute subtype that develops fast. On the contrary, Ce seems to be a mild subtype

that develops slowly.
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Furthermore, we demonstrate our model’s usefulness in predicting the disease

conversion even when the patient is still in mild cognitive impairment (MCI). Af-

ter applying our learned model to the MCI subjects, we find MCI patients with

more H component is more likely to convert into AD.

Our future work includes

1. finding and justifying the most appropriate number of subtypes mathemat-

ically or computationally;

2. performing case studies that instantiate the power of mixed membership;

3. analyzing the baseline and longitudinal change simultaneously under a uni-

fied framework, possibly linear mixed-effects model;

4. modeling the functional magnetic resonance imaging (fMRI), which is per-

ceived to be more responsive to early-stage AD development than structural

MRI;

5. developing a new generative model whose observation is continuous, which

frees us from the ad hoc preprocessing, such as quantization; and

6. modeling the disease development as a dynamic graphical model, which may

lead to a trajectory-based classification of AD subtypes.
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Appendix A

Variational Inference in Latent

Dirichlet Allocation

𝑤𝑑,𝑛𝑧𝑑,𝑛𝜃𝑑𝛼 𝛽

𝑁𝑑

𝐷

Figure A-1: LDA model revisited.

𝛾𝑑 𝜃𝑑 𝜑𝑑,𝑛 𝑧𝑑,𝑛

𝑁𝑑

𝐷

Figure A-2: Variational distribution revisited.
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A.1 Constructing the Lower Bound

From Figure A-2, the variational distribution used to approximate the true pos-

terior is factorizable as

𝑞 (𝜃, z | 𝛾, 𝜑) = 𝑞 (𝜃 | 𝛾)
𝑁∏︁

𝑛=1

𝑞 (𝑧𝑛 | 𝜑𝑛) .

The lower bound ℒ (𝛾, 𝜑 | 𝛼, 𝛽) of the single-document1 log likelihood log 𝑝 (w | 𝛼, 𝛽)

is computed using Jensen’s inequality as follows

log 𝑝 (w | 𝛼, 𝛽) = log

∫︁ ∑︁
z

𝑝 (𝜃, z,w | 𝛼, 𝛽) d𝜃

= log

∫︁ ∑︁
z

𝑝 (𝜃, z,w | 𝛼, 𝛽) 𝑞 (𝜃, z | 𝛾, 𝜑)

𝑞 (𝜃, z | 𝛾, 𝜑)
d𝜃

= log

∫︁ ∑︁
z

𝑞 (𝜃, z | 𝛾, 𝜑)
𝑝 (𝜃, z,w | 𝛼, 𝛽)

𝑞 (𝜃, z | 𝛾, 𝜑)
d𝜃

= log𝐸𝑞

{︂
𝑝 (𝜃, z,w | 𝛼, 𝛽)

𝑞 (𝜃, z | 𝛾, 𝜑)

}︂
≥ 𝐸𝑞 {log 𝑝 (𝜃, z,w | 𝛼, 𝛽)} − 𝐸𝑞 {log 𝑞 (𝜃, z | 𝛾, 𝜑)}

, ℒ (𝛾, 𝜑 | 𝛼, 𝛽) .

(A.1)

The difference between the log likelihood and its lower bound can be proven

to be in fact the KL divergence between the variational distribution and the true

posterior.

log 𝑝 (w | 𝛼, 𝛽) − ℒ (𝛾, 𝜑 | 𝛼, 𝛽)

= 𝐸𝑞 {log 𝑝 (w | 𝛼, 𝛽)} − 𝐸𝑞 {log 𝑝 (𝜃, z,w | 𝛼, 𝛽)} + 𝐸𝑞 {log 𝑞 (𝜃, z | 𝛾, 𝜑)}

= 𝐸𝑞

{︂
log

𝑝 (w | 𝛼, 𝛽) 𝑞 (𝜃, z | 𝛾, 𝜑)

𝑝 (𝜃, z,w | 𝛼, 𝛽)

}︂
= 𝐸𝑞

{︂
log

𝑞 (𝜃, z | 𝛾, 𝜑)

𝑝 (𝜃, z | w, 𝛼, 𝛽)

}︂
1This also explains why the document subscript is dropped for simplicity hereafter.
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= 𝐷𝐾𝐿(𝑞 (𝜃, z | 𝛾, 𝜑) ‖ 𝑝 (𝜃, z | w, 𝛼, 𝛽)).

Therefore, maximizing the lower bound is equivalent to minimizing the KL diver-

gence 𝐷𝐾𝐿(𝑞 (𝜃, z | 𝛾, 𝜑) ‖ 𝑝 (𝜃, z | w, 𝛼, 𝛽)). That is, the variational distribution

automatically approaches to the real posterior as we maximize the lower bound.

A.2 Expanding the Lower Bound

To maximize the lower bound, we first need to spell out the lower bound ℒ (𝛾, 𝜑 | 𝛼, 𝛽)

in terms of the model parameters (𝛼, 𝛽) and the variational parameters (𝛾, 𝜑).

Continuing from (A.1), we have

ℒ (𝛾, 𝜑 | 𝛼, 𝛽) = 𝐸𝑞 {log 𝑝 (𝜃, z,w | 𝛼, 𝛽)} − 𝐸𝑞 {log 𝑞 (𝜃, z | 𝛾, 𝜑)}

= 𝐸𝑞

{︂
log

𝑝 (𝜃, z,w | 𝛼, 𝛽)

𝑞 (𝜃, z | 𝛾, 𝜑)

}︂
= 𝐸𝑞

{︂
log

𝑝 (𝜃 | 𝛼) 𝑝 (z | 𝜃) 𝑝 (w | z, 𝛽)

𝑞 (𝜃 | 𝛾) 𝑞 (z | 𝜑)

}︂
= 𝐸𝑞 {log 𝑝 (𝜃 | 𝛼)} + 𝐸𝑞 {log 𝑝 (z | 𝜃)} + 𝐸𝑞 {log 𝑝 (w | z, 𝛽)}

− 𝐸𝑞 {log 𝑞 (𝜃 | 𝛾)} − 𝐸𝑞 {log 𝑞 (z | 𝜑)} .
(A.2)

We now further expand each of the five terms in (A.2).

The first term is

𝐸𝑞 {log 𝑝 (𝜃 | 𝛼)} = 𝐸𝑞

⎧⎨⎩log
Γ
(︁∑︀𝐾

𝑖=1 𝛼𝑖

)︁
∏︀𝐾

𝑘=1 Γ (𝛼𝑘)

𝐾∏︁
𝑘=1

𝜃𝛼𝑘−1
𝑘

⎫⎬⎭
= 𝐸𝑞

{︃
log Γ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
+

𝐾∑︁
𝑘=1

(𝛼𝑘 − 1) log 𝜃𝑘 −
𝐾∑︁
𝑘=1

log Γ (𝛼𝑘)

}︃

=
𝐾∑︁
𝑘=1

(𝛼𝑘 − 1)𝐸𝑞 {log 𝜃𝑘} + log Γ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
−

𝐾∑︁
𝑘=1

log Γ (𝛼𝑘)

=
𝐾∑︁
𝑘=1

(𝛼𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
+ log Γ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
−

𝐾∑︁
𝑘=1

log Γ (𝛼𝑘) ,
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where Ψ(·) is the digamma function, the first derivative of the log Gamma func-

tion. The final line is due to the following property of the Dirichlet distribution

as a member of the exponential family. If 𝜃 ∼ 𝐷𝑖𝑟(𝛼), then 𝐸𝑝(𝜃|𝛼) {log 𝜃𝑖} =

Ψ(𝛼𝑖) − Ψ(
∑︀𝐾

𝑖=1 𝛼𝑖).

The second term is

𝐸𝑞 {log 𝑝 (z | 𝜃)} = 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝑝 (𝑧𝑛 | 𝜃)

}︃

= 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝐾∏︁
𝑘=1

𝜃
1𝑧(𝑛,𝑘)
𝑘

}︃

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝐸𝑞 {1𝑧(𝑛, 𝑘) log 𝜃𝑘}

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝐸𝑞 {1𝑧(𝑛, 𝑘)}𝐸𝑞 {log 𝜃𝑘}

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝜑𝑛,𝑘

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
,

where 𝜑𝑛,𝑘 is the probability of the 𝑛th word being produced by topic 𝑘, and 1(·)
is the indicator function as defined in Section 2.3.2.

We expand the third term as

𝐸𝑞 {log 𝑝 (w | z, 𝛽)} = 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝑝 (𝑤𝑛 | 𝑧𝑛, 𝛽)

}︃

= 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝐾∏︁
𝑘=1

𝑉∏︁
𝑣=1

𝛽
1𝑧(𝑛,𝑘)1𝑤(𝑛,𝑣)
𝑘,𝑣

}︃

= 𝐸𝑞

{︃
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑉∑︁
𝑣=1

1𝑧(𝑛, 𝑘)1𝑤(𝑛, 𝑣) log 𝛽𝑘,𝑣

}︃

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑉∑︁
𝑣=1

𝐸𝑞 {1𝑧(𝑛, 𝑘)}1𝑤(𝑛, 𝑣) log 𝛽𝑘,𝑣

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑉∑︁
𝑣=1

𝜑𝑛,𝑘1𝑤(𝑛, 𝑣) log 𝛽𝑘,𝑣.
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Very similar to the first term, the fourth term is expanded as

𝐸𝑞 {log 𝑞 (𝜃 | 𝛾)} =
𝐾∑︁
𝑘=1

(𝛾𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
+ log Γ

(︃
𝐾∑︁
𝑘=1

𝛾𝑘

)︃
−

𝐾∑︁
𝑘=1

log Γ (𝛾𝑘) .

Finally, the fifth term is expanded as

𝐸𝑞 {log 𝑞 (z | 𝜑)} = 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝑞 (𝑧𝑛 | 𝜑𝑛)

}︃

= 𝐸𝑞

{︃
log

𝑁∏︁
𝑛=1

𝐾∏︁
𝑘=1

𝜑
1𝑧(𝑛,𝑘)
𝑛,𝑘

}︃

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝐸𝑞 {1𝑧(𝑛, 𝑘)} log 𝜑𝑛,𝑘

=
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝜑𝑛,𝑘 log 𝜑𝑛,𝑘.

Therefore, the fully expanded lower bound is

ℒ (𝛾, 𝜑 | 𝛼, 𝛽) =
𝐾∑︁
𝑘=1

(𝛼𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
+ log Γ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
−

𝐾∑︁
𝑘=1

log Γ (𝛼𝑘)

+
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝜑𝑛,𝑘

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃

+
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝑉∑︁
𝑣=1

𝜑𝑛,𝑘1𝑤(𝑛, 𝑣) log 𝛽𝑘,𝑣 (A.3)

−
𝐾∑︁
𝑘=1

(𝛾𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
− log Γ

(︃
𝐾∑︁
𝑘=1

𝛾𝑘

)︃
+

𝐾∑︁
𝑘=1

log Γ (𝛾𝑘)

−
𝑁∑︁

𝑛=1

𝐾∑︁
𝑘=1

𝜑𝑛,𝑘 log 𝜑𝑛,𝑘.

A.3 Maximizing the Lower Bound

In this section, we maximize the lower bound w.r.t. the variational parameters

𝜑 and 𝛾. Recall that as the maximization runs, the KL divergence between the
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variational distribution and the true posterior drops (E-step of the variational EM

algorithm).

A.3.1 Variational Multinomial

We first maximize Equation (A.3) w.r.t. 𝜑𝑛,𝑘. Since
∑︀𝐾

𝑘=1 𝜑𝑛,𝑘 = 1, this is a

constrained optimization problem that can be solved by the Lagrange multiplier

method. The Lagrangian w.r.t. 𝜑𝑛,𝑘 is

ℒ[𝜑𝑛,𝑘] = 𝜑𝑛,𝑘

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
+ 𝜑𝑛,𝑘 log 𝛽𝑘,𝑣 − 𝜑𝑛,𝑘 log 𝜑𝑛,𝑘 + 𝜆𝑛

(︃
𝐾∑︁
𝑖=1

𝜑𝑛,𝑖 − 1

)︃
,

where 𝜆𝑛 is the Lagrange multiplier. Taking the derivative, we get

𝜕

𝜕𝜑𝑛,𝑘

ℒ[𝜑𝑛,𝑘] = Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃
+ log 𝛽𝑘,𝑣 − log 𝜑𝑛,𝑘 − 1 + 𝜆𝑛.

Setting this derivative to zero yields

𝜑𝑛,𝑘 = 𝛽𝑘,𝑣 exp

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃
+ 𝜆𝑛 − 1

)︃

∝ 𝛽𝑘,𝑣 exp

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
.

A.3.2 Variational Dirichlet

Now we maximize Equation (A.3) w.r.t. 𝛾𝑘, the 𝑘th component of the Dirichlet

parameter. Only the terms containing 𝛾𝑘 are retained.

ℒ[𝛾] =
𝐾∑︁
𝑘=1

(𝛼𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃

+
𝑁∑︁

𝑛=1

𝜑𝑛,𝑘

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
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−
𝐾∑︁
𝑘=1

(𝛾𝑘 − 1)

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
− log Γ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃
+

𝐾∑︁
𝑘=1

log Γ (𝛾𝑘)

Taking the derivative w.r.t. 𝛾𝑘, we have

𝜕

𝜕𝛾𝑘
ℒ[𝛾] =

(︃
Ψ′(𝛾𝑘) − Ψ′

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
(𝛼𝑘 − 1)

+

(︃
Ψ′(𝛾𝑘) − Ψ′

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
𝑁∑︁

𝑛=1

𝜑𝑛,𝑘

−
(︃

Ψ′(𝛾𝑘) − Ψ′

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃
(𝛾𝑘 − 1) −

(︃
Ψ(𝛾𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃

−
Ψ
(︁∑︀𝐾

𝑖=1 𝛾𝑖

)︁
Γ
(︁∑︀𝐾

𝑖=1 𝛾𝑖

)︁ +
Ψ(𝛾𝑘)

Γ (𝛾𝑘)

=

(︃
Ψ′(𝛾𝑘) − Ψ′

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃(︃
𝛼𝑘 +

𝑁∑︁
𝑛=1

𝜑𝑛,𝑘 − 𝛾𝑘

)︃
− Ψ(𝛾𝑘) + Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃

− Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃
+ Ψ(𝛾𝑘)

=

(︃
Ψ′(𝛾𝑘) − Ψ′

(︃
𝐾∑︁
𝑖=1

𝛾𝑖

)︃)︃(︃
𝛼𝑘 +

𝑁∑︁
𝑛=1

𝜑𝑛,𝑘 − 𝛾𝑘

)︃
.

Setting it to zero, we have

𝛾𝑘 = 𝛼𝑘 +
𝑁∑︁

𝑛=1

𝜑𝑛,𝑘.

A.4 Estimating Model Parameters

The previous section is the E-step of the variational EM algorithm, where we

tighten the lower bound w.r.t. the variational parameters; this section is the M-

step, where we maximize the lower bound w.r.t. the model parameters 𝛼 and 𝛽.

Now we add back the document subscript to consider the whole corpus.
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By the assumed exchangeability of the documents, the overall log likelihood

of the corpus is just the sum of all the documents’ log likelihoods, and the overall

lower bound is just the sum of the individual lower bounds. Again, only the terms

involving 𝛽 are left in the overall lower bound. Adding the Lagrange multipliers,

we obtain

ℒ[𝛽] =
𝐷∑︁

𝑑=1

𝑁𝑑∑︁
𝑛=1

𝐾∑︁
𝑘=1

𝑉∑︁
𝑣=1

𝜑𝑑,𝑛,𝑘1𝑤(𝑑, 𝑛, 𝑣) log 𝛽𝑘,𝑣 +
𝐾∑︁
𝑘=1

𝜆𝑘

(︃
𝑉∑︁

𝑣=1

𝛽𝑘,𝑣 − 1

)︃
.

Taking the derivative w.r.t. 𝛽𝑘,𝑣 and setting it to zero, we have

𝜕

𝜕𝛽𝑘,𝑣

ℒ[𝛽] =
𝐷∑︁

𝑑=1

𝑁𝑑∑︁
𝑛=1

𝜑𝑑,𝑛,𝑘1𝑤(𝑑, 𝑛, 𝑣)
1

𝛽𝑘,𝑣

+ 𝜆𝑘 = 0

⇒ 𝛽𝑘,𝑣 = − 1

𝜆𝑘

𝐷∑︁
𝑑=1

𝑁𝑑∑︁
𝑛=1

𝜑𝑑,𝑛,𝑘1𝑤(𝑑, 𝑛, 𝑣)

⇒ 𝛽𝑘,𝑣 ∝
𝐷∑︁

𝑑=1

𝑁𝑑∑︁
𝑛=1

𝜑𝑑,𝑛,𝑘1𝑤(𝑑, 𝑛, 𝑣).

Similarly, for 𝛼, we have

ℒ[𝛼] =
𝐷∑︁

𝑑=1

(︃
𝐾∑︁
𝑘=1

(𝛼𝑘 − 1)

(︃
Ψ(𝛾𝑑,𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑑,𝑖

)︃)︃
+ log Γ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
−

𝐾∑︁
𝑘=1

log Γ (𝛼𝑘)

)︃
𝜕

𝜕𝛼𝑘

ℒ[𝛼] =
𝐷∑︁

𝑑=1

(︃
Ψ(𝛾𝑑,𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑑,𝑖

)︃
+ Ψ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
− Ψ(𝛼𝑘)

)︃

=
𝐷∑︁

𝑑=1

(︃
Ψ(𝛾𝑑,𝑘) − Ψ

(︃
𝐾∑︁
𝑖=1

𝛾𝑑,𝑖

)︃)︃
+ 𝐷

(︃
Ψ

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
− Ψ(𝛼𝑘)

)︃
.

Since the derivative also depends on other 𝛼𝑘′ ̸=𝑘, we compute the Hessian

𝜕2

𝜕𝛼𝑘𝜕𝛼𝑘′
ℒ[𝛼] = 𝐷Ψ′

(︃
𝐾∑︁
𝑖=1

𝛼𝑖

)︃
−𝐷𝛿(𝑘 − 𝑘′)Ψ(𝛼𝑘),

and notice that its form allows for the linear-time Newton-Raphson algorithm.
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